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Abstract

In this paper, we study the accuracy of _,daptively chosen, mapped polynomial ap-

proximations for functions with steep gradients or discontinuities. We show that, for

steep gradient functions, one can obtain spectral accuracy in the original coordinate

system by using polynomial approximation_ in a transformed coordinate system with

substantially fewer collocation points than are necessary using polynomial expansion

directly in the original, physical, coordinate system. We also show that one can avoid

the usual Gibbs oscillation, associated with ,,teep gradient solutions of hyperbolic pde's,

by approximation in suitably chosen coordinate systems. Continuous, high gradient,

solutions are computed with spectral accuracy (as measured in the physical coordinate

system). Discontinuous solutions associated with nonlinear hyperbolic equations can

be accurately computed by using an artificial viscosity chosen to smooth out the solu-

tion in the mapped, computational, domain. Thus, we can effectively resolve shocks on

a scale that is subgrid to the resolution awdlable with collocation only in the physical

domain. Examples with Fourier and Chebyshev collocation are given.

*Research was supported by a University of Connec:ticut Research Foundation Faculty Research award and

by the National Aeronautics and Space Administration under Contract No. NASI-18107 while in residence
at the Institute for Computer Applications in Scien(e and Engineering (ICASE}, NASA Langely Research

Center, Hampton, VA 23665.





1 Introduction

During the past decade, spectral methods have become the numerical method of choice

for the approximate solution of time dependent partial differential equations in many

branches of computational science. This is due to their ability to yield highly accurate

approximations of smooth solutions with substantially fewer grid points than would be

required by comparative finite difference methods. Thus, for complex flows requiring

detailed simulation, the success of spectral methods has been striking. This is particularly

true for simulation of turbulent flows and the transition to turbulence (see references in

[8]). Spectral methods have also become the primary numerical method in global weather

modeling [14,18].

Straight forward application of the spectra: method to problems with highly localized

phenomena that are not well resolved by the global discretization produce incorrect, glob-

ally oscillating, solutions due to the Gibbs pherLomenon [8,11,27]. This phenomenon shows

up in linear and nonlinear equations and includes both computational discontinuities (con-

tinuous solutions with steep gradients that are not resolved by the finite discretization)

and real discontinuities (such as shock waves). Various methods [1,8,9,10,12,16,17,20,23]

have been proposed to extract the correct phy_ical solution from the unwanted oscillatory

one. Most of these add a finite order truncation error. A spectrally accurate physical space

filter [1,9,12] and a spectrally accurate vanishing viscosity [22,26] have been demonstrated.

Both of these approaches, however, perform poorly when used with a realistic number

of collocation points. More sophisticated, nonoscillatory spectral methods are currently

under investigation [7].

Adaptive grid methods have been used suo=essfully with finite difference and finite ele-

ment methods for many problems with highly localized phenomenon (see references in [2]).

The dynamic placement of points to increase local resolution in adaptive finite difference

and finite element methods is not applicable to spectral methods since the location of

the collocation points for pseudospectral methods is intimately connected with the global

convergence properties of the polynomial approximation. (The accuracy of polynomial

expansions for various choices of collocation points is investigated in [25].)

An alternative approach to achieving high resolution locally is to use coordinate trans-

formations which stretch out the region of high gradients so that, in the new coordinate

system, the high gradient phenomena is well resolved. One can then use standard spectral

methods to solve the mapped equation in the new coordinate system. Such a technique has

been successfully applied to a system of reaction diffusion equations arising in combustion

in [4,5] and independently in [13].



By using adaptively chosen coordinate transformations and computing in the compu-

tational domain, we are no longer using polynomial approximation for the solution in the

physical coordinate system. In this paper, we examine the accuracy of mapped polynomial

approximations. We shall see that, for steep gradient functions, one can obtain spectral

accuracy in the physical space by using polynomial approximation in a transformed co-

ordinate system with substantially fewer collocation points than would be necessary with

polynomial approximation directly in the physical space. We also show that one can avoid

the usual Gibbs oscillation associated with discontinuous solutions of hyperbolic pde's, by

approximation in suitably chosen coordinate systems. Continuous, high gradient solutions

are computed with spectral accuracy (as measured in the physical coordinate system).

Discontinuous solutions associated with nonlinear hyperbolic equations can be accurately

computed by using an artificial viscosity chosen to smooth out the solution in the com-

putational domain where the solution is already more smoothly represented than in the

physical domain. Thus, we effectively resolve the shock on a scale that is subgrid to the

resolution available with collocation only in the physical domain.

In the next section, we describe the adaptive spectral method and present numerical

experiments in section 3. Conclusions are presented in section 4.

2 Numerical Method

Review of Standard Pseudospectral Method

We illustrate the standard pseudospectral method [8,11,27] by considering the one dimen-

sional equation

u, : G(u) (1)

where G is a differential operator on the interval x E [a, b]. The function u(x,t) is approx-

imated (suppressing the time dependence) by a polynomial

N

-- (2)
j=0

that interpolates u(x) at N+I distinct points x0,.., xlv at time t. At the collocation points

xk, if @j(zk) = 6j_, then aj = u(zj). The expansion polynomial then has the form

N

: (3)
i=O
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where _bj(x_) = 6jk. Differentiation of u is accomplished by analytically differentiating the

interpolating polynomial N

= (4)
j=O

Hence, given the values of u(x) at the collocation points x_, we can find the approximate

derivative (at the collocation points) by a matrix D multiplying the grid function u(x_).

D can be computed explicitly from D = {dik} = _b_(xk). The cost of computing the

derivative is O(N 2) operations from the matrix multiplication. This can be very efficient

on a vector or parallel computer. Higher derivative matrices can easily be constructed

from the relation Dk = (D) _. Boundary conditions can also be directly incorporated into

the differentiation matrices.

Common choices for collocation points and interpolating polynomials [8,27] are the

fourier collocation points

2_j j = O,...,g (godd)
xi-- N+I

,x -- x i,
with 1 sin[(N + 1)(x- x/)l cot[_l

¢i(x) : g +------_ '2

for periodic problems in x E [0, 2n], and the C[.ebyshev collocation points

(5)

x i = cos_rj/N j = O,...,N

with

Tn(x) = cos(_/cos-l(x))

and (_l)J+l(l_ x2)T_vCx) (6 7

: ciN=( -

where c0 : CN : 2, and cj : 1,for 1 <_ j _< N -- 1 for nonperiodic problems in x E [-1,1].

These particular choices enable the interpc,lating polynomials to also be written as an

expansion in orthogonal basis functions {¢j(a')} such that the sums (37 and (47 can be

computed by an FFT. This reduces the cost of computing the spectral derivative from

O(N 2) to O(N log N) operations. The matrix multiplication, however, has the advantage

that it is more flexible and easier to vectorize.

Thus, the pseudospectral approximate solution uj = u(xi, t) at time t=t _+1 is obtained

by first evaluating the differential operator C_ at the collocation points at time t=t" by

either an FFT or a matrix multiplication, and _hen updating (in time ) the resulting system

of ordinary differential equations.
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Description of Adaptive Procedure

We now describe the adaptive procedure (first introduced in [5] for a system of reaction

diffusion equations modeling solid fuel combustion).

A family of transformations

s = q(x, _) (7)

mapping the interval [a,b] onto itself, and parameterized by the vector _, is introduced.

Each value of _, defines a new coordinate system to which equation (1) can be transformed

and then solved by the standard pseudospectral method ( in the new coordinate system).

In the experiments described below we use coordinate transformations with two degrees

of freedom. One parameter /_ controls the magnitude of the coordinate stretching (or

compression) about a point determined by the second parameter 7 • For periodic problems

we map the physical x coordinate system (x E [0, 2_r]) to the computational s coordinate

system (s E [0, 27r]) with the fractional linear transformation

where/_ > 0, and 171 < 1.

and differentiated.

ei° = e i(z-_} _
1 - t_ei( z- 7) (8)

where I/_l < 1 and 0 < 7 < 27r . For nonperiodic problems, we map the physical coor-

dinates, x E [-1, 1], to the computational coordinates, s E [-1, 11, with the composite
transformation

2tan_lr l. ,Tr , ff + x
" = _ t_ant_t_'__])]]" (9)

In both cases, the mappings are analytic and easily inverted

Differentiation matrices are easily constructed for the collocation points in the compu-

tational domain since i)u/ax = i)/Os-_ = q'O/Os _.. QD = D, where Q is a diagonal matrix

whose elements contain the derivative of the map, and D is the differentiation matrix for

the collocation points in the physical domain. Higher derivatives are obtained by taking

powers of/). The transformed equations can be easily generated with the matrix formula-

tion, making the exact representation in a particular coordinate system transparent. We

simply interpolate u(x,t) to u(s,t) and use b instead of D in (1).

A particular coordinate system for a function u(x) can be found by minimizing a

two parameter functional bounding the interpolation error in the maximum norm. The
pointwise interpolation error

oo

lU(X) --UN-I(X)I = I _ Uj(_$'(X) I (10)

i=N
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can be reducedby finding a coordinate system _nwhich the leading term in the interpo-

lation error is minimized. In the nonperiodic case, this leads to the functional derived in

[41
f 1 d 2 ds

In the periodic case, a similar derivation (see Agpendix), leads to the H 1

I(_) : f0_[lu.I_+ lul_]ds.

(11)

norm

(12)

We will also consider the effects of using the H2 norm,

_0 2x" [5x(_) = [AI_.I 2 + t_lu. + c[_l:lds. (13)

The algorithm is therefore:

i) discretize the right hand side of (1) and integrate the resulting ODE's to t = tl in an

initial coordinate system.

ii) find _,_i_ which minimizes the monitor function I(_).

iii) Interpolate the solution to the collocation points in the new coordinate system using

the interpolation formula (3).

iv) Integrate to t = t2.

v) go to (ii).

3 Numerical Experiments

In this section we consider the efficiency and accuracy of mapped polynomial expansions.

We study applications to approximation theory and hyperbolic partial differential equa-

tions. Using the previously described adaptive procedure, a function is approximated by

orthogonal polynomials in some transformed coordinate system 's'. However, we measure

the accuracy by computing the error in the original 'physical' coordinate system.

Approximation Theory

We measure the approximation error by considering the pointwise error at a sequence of

points. Since the error at the collocation points is zero by construction, we interpolate to

a sequence of N' uniformly spaced points, yj. The pointwise error is given by

e(yj)---If(vj)- fN(Vi)l j= O,...,g' (14)

where fN(x) is a polynomial of degree N. Next we minimize the monitor function and

determine a coordinate system, s. We then re_resent f(s) at the collocation points in the



new coordinate system and interpolate to the points s¢ = s(y¢), the image of the points yl.

The pointwise error is again measured in the original 'x' coordinate system.

In figure la, we display the log of the maximum pointwise error for f(x) = tanh(Mx)

with M = 8, 16, 32 in the interval x E [-1,1]. We approximate f(x) by Chebyshev

polynomials of degree N, where N/M = 1,..,4. The top three graphs are the result of

standard Chebyshev polynomial approximation, while the bottom three are the result of

Chebyshev polynomial approximation in a coordinate system selected by the minimization

of the monitor function (11). Although both cases converge exponentially, we see the

mapped polynomials require considerably fewer points to achieve very high accuracy. Since

the high gradient region occurs in the center of the domain, simply adding Chebyshev

collocation points provides increasing resolution faster at the boundaries than at the center.

Therefore it is more effective to use the coordinate stretching to increase local resolution

than to simply add more collocation points in the original coordinate system. The adaptive

procedure provides a coordinate stretching where the gradient is largest and maps it to a

coordinate system where a significant proportion of the collocation points contribute to its

resolution.

Next, we examine the convergence properties of the adaptive method when the steep

gradient region varies away from the center of the domain, where the resolution is coarsest,

to the boundary, where the resolution is finest. In figure lb. we show the log of the

maximum pointwise error for f(x) = tanh[M(x- x0)] with M = 8,32,128 and x0 varying

between the center (x0 = 0) and the boundary (x0 = 1). In this case we use Chebyshev

expansion with 32 modes. For a given value of M, the top plot is the standard Chebyshev

polynomial and the bottom plot is the mapped polynomial interpolation. We see that for M

= 8 and 32 the error is several orders of magnitude smaller with the mapped polynomial

expansions than with the standard Chebyshev polynomial interpolation. However for

M=128, there is insufficient resolution to resolve the gradient even with the mapping; and

hence the errors are only slightly better with the mapping. The oscillation in the adaptive

cases is due to the fact that in the discrete search of parameter space (/_,_/) to find a

minimum for (11) we only looked at values of ? that were multiples of .1, whereas the

point of maximum gradient (x0) was allowed to vary in multiples of .05. Thus, when x0

occurs between multiples of .1, the optimal parameters were not found. Still the results

are much better than if no mapping had taken place.

Partial Differential Equations

In the previous section, we have shown that for functions with large gradients, mapped

polynomials can yield several orders of magnitude more accuracy than the standard spec-
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tral expansions. We now consider the accuracy of mapped polynomial expansions in the

context of hyperbolic partial differential equations where the coordinate transformations

can vary dynamically in time. We consider several prototype examples of wave propa-

gation including a linear wave equation for advection of a sharp spike and the nonlinear

Burgers equation for shock formation and propagation. In both cases we will consider

periodic boundary conditions and hence we use triginometric polynomials for the spatial

discretization. In order to control the tempor_d errors in all of our examples we use the

LSODE solver from the ODEPACK package [6,15] to integrate the resulting system of

(spatially discretized) ordinary differential equvtions. This solver uses dynamically chosen

time stepping in order to guarantee a prescribed error tolerance at each output time. The

error tolerance was set to 10 -r.

In practice we do not change coordinate systems every time step. Instead, we evaluate

the monitor function I(_) at each time step and compare it with its previous value when

we last changed coordinate systems. We adapt to a new coordinate system when the ratio

falls below .7 or above 1.3 .

Linear Hyperbolic Equations

Consider the one dimensional linear advection equation

,,,+,.,z = o (15)

with periodic boundary conditions on the interval 0 < x < 2_r. Nonsmooth initial data

u(x,0)--f(x) yields the nonsmooth solution u(x,t)=f(x-t) (extended periodically) for all

t > 0. We choose a sharply peaked Gaussian iaitial function

f(x) = e (16)

This yields a Gaussian with width 2Ax, where Ax = 2_r/N. If we choose 4Ax 2 = .025

then Ax = .078, corresponding to N = 2_r/Ax _ 80 points. Thus we need a local

resolution corresponding to N=80 points near the peak. In our example we will use 32

points, therefore the function is not adequately resolved near the peak and behaves as

if there is a discontinuity. We expect to see global oscillations. In figure 2a, we display

the computed solution at time t= 0, 15, 30, 45, 60, 64 At. In these examples we use a

time step of At = .SAx, and integrate in time with an explicit Adams scheme from the

LSODE package (MF=10). Note that the LSODE package uses an internally chosen At

to guarantee the prescribed accuracy. Thus At is only used for output purposes. We

see that when the solution is not centered at a grid point, the spectral approximation

displays high frequency oscillations. This could have a serious effect in more complicated



systems where the advected quantity is then fed into other components of the system. We

also point out the observation that the information about the correct physical solution is

still contained in the oscillatory solution; and the spectral method is able to accurately

reproduce the solution in future time, when the spike is centered at a grid point. The

explanation for this is due to the fact that since the interpolation error of the initial

function is constructed to vanish at the collocation points, and since the spectral method

introduces almost no dissipation, whenever the solution is merely a translate of the initial

function to a center about another collocation point it displays no interpolation error.

Hence we can reproduce, without oscillation, the exact solution at the collocation points

at times when At is a integer multiple of Ax. At other times when the solution is a

translate of the initial function between collocation points, we observe the expected global

oscillation.

In the adaptive case, we begin by chosing an appropriate coordinate system to ade-

quately represent the initial function. We therefore minimize the H 1 norm of the initial

function (16), which we assume to have with as much resolution as needed. The initial

function is then prescribed at the Nfourier collocation points in the new coordinate system.

The transformed equation

u, + (x,)u, : 0 (17)

is then updated by the standard fourier collocation method. This procedure is then re-

peated every time step, with the adaption occurring as described previously. In figure

2b, we display the results of the computation, based on adaption with the H 1 norm, at

the same output times as in the non-adaptive case (figure 2a.). For output purposes, we

have interpolated the solution back to the physical x coordinate system. In figure 2c, the

same computation was done using the H 2 norm of u as the minimizing functional. We also

present, in figure 2d, for comparison, results of the adaptive procedure with the spatial

differentiation matrix replaced with the fourth order finite difference matrix.

We compare these cases by computing the 12 errors of the grid functions ie

1 N

Ile(t)ilz = {_ _ lu,z_c,(xi, t) - U_o_p_,,,d(Xi, t)]2} 1/2 (18)

and the l_ error

lle(t)lloo= maxilu,, ct(xi, t) - U o  t d(xj, t)l,

The maximum time errors

IleCt)ll..,, 
te[0,2¢]

for the four schemes is presented in table 1.

(19)
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Method max 12 error maz loo error

Standard fourier collocation

Adaptive fourier collocation using H 2 norm

Adaptive fourier collocation using H 1 norm

Adaptive 4-th order finite diff. using H 2 norm

.038

.003

.006

.143

.096

.009

.012

.446

These results suggests that adaption based on minimizing the H 2 norm is preferred

over adaption based on the H I norm. When the sole criteria for choosing the coordinate

system is the H 1 norm too much weight is placed on the steep gradient (high frequency)

region of the solution at the expense of the smooth (low frequency) region. We can see in

figure 2b, the presence of a low frequency error component in the smooth, constant, portion

of the solution. The use of the H 2 norm provides a smoother coordinate mapping with

more emphasis on the smooth region of the sol,ltion. Thus, the low frequency components

of the solution is more accurate. Both adap;ed solutions, however, provide significant

improvement over the nonadapted solution an,] the adapted fourth order finite difference

solution.

Nonlinear Hyperbolic Equations

As a model for the formation of discontinuous solutions, we consider Burgers equation

+ = 0 (20)

with periodic boundary conditions on the interval 0 < x < 2r. Smooth initial data

u(x,0)=f(x) will develop discontinuous (weak) s31utions in finite time. An entropy condition

is required to pick out the correct physical solution [21].

The fourier collocation method will break down and yield global oscillations as soon as

the solution steepens up too much to be resolved on the finite grid. The adaptive procedure

will delay this breakdown, but its occurrence is inevitable. Artificial viscosity can smooth

out the solution so that it becomes resolvable on the finite grid. This introduces a finite

order truncation error and therefore we loose the spectral accuracy. Recently [22,26], a

spectrally accurate vanishing viscosity solutior_ has been shown to converge to the entropy

solution of (20). However, computations witl: realistic number of collocation points still

shows global oscillations [26].

We propose here to couple the adaptive pseudospectral method with the artificial vis-

cosity method to produce oscillation free soluti ons using significantly less artificial viscosity

than would be necessary with standard fourier collocation. This will reduce the truncation

error introduced by the artificial viscosity. G_ttlieb et al. [10] have shown that spectral

collocation methods are capable of resolving a shock over one effective grid interval. We
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therefore expect, that by appropriate coordinate stretching, the adaptive pseudospectral

method can resolve shocks over a significantly smaller effective grid interval; the equivalent

of using several times more collocation points.

We approximate the solution of the inviscid Burgers equation (20) by the viscous version

u, + l (u_)= = vu== (21)

where vu=® is the artificial viscosity term, and v is a grid dependent viscosity coefficient. It

is well known [21], that in the limit v $ 0 solutions of (21) converge to the entropy solution

of (20). In our numerical experiments we use initial data f(x) = sin(x). The inviscid

Burgers equation develops a shock discontinuity at x = _r. Again, the fourier collocation

differentiation matrix is used for the spatial differentiation. The resulting system of ODE's

was integrated using an explicit Adams method (MF=10) from the LSODE package. The

solution was integrated up to time t = 1.47, after the shock has formed. We determined

experimentally that for collocation with 32 points, a viscosity of v = .08 is needed to

obtain an oscillation free solution. The adaptive solution based on the H 1 norm only needs

a viscosity coefficient of v = .02 to yield an oscillation free solution. In figures 3a,b,c we

show a) a time history of the solution up to t=1.47, b) the exact and computed solutions at

t=1.47 and c) a time history of the errors for the non adaptive fourier collocation solution

of (21) with artificial viscosity coefficients of u = .08. In figure 4a,b,c we show the same

plots for the adapted solution with an artificial viscosity coefficient u = .02.

Comparing the two cases we see the non adapted solution requires four times as much

viscosity to reduce the global oscillations. The effect of this larger viscosity can be seen in

a much larger region about the shock and, in fact, prevents the computed solution from

shocking up. The maximum error occurs just before the solution shocks up, when the

second derivative is greatest. The smaller viscosity used in the adaptive solution accounts

for a reduction in the maximum pointwise error by a factor of four. The larger viscosity

needed for the nonadaptive solution prevents the solution from steepening any further,

and the maximum pointwise error persists after the shock forms. However the adapted

solution, with the smaller viscosity, is able to steepen further and approach the true shock

solution. After the shock forms, the solution is essentially piecewise linear and the effect

of the second derivative truncation error is reduced. The error is then reduced another

factor of four.

Finally, we consider the case of a moving shock. If we use the initial condition f(x) =

.3 + .7sin(x), the solution shocks up and starts starts to propagate. In figure 5a, we

plot a sampling of the time history of the solution up to t=4.1. The pointwise error at

these sampled times are plotted in figure 5b. As in the previous case, we use adaption
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basedon the H 1 norm and a viscosity coefficient of v = .02 . We see that, as before, the

maximum pointwise errors occurrs just before the solution shocks up, when its curvature

is maximum. After the solution shocks up it almost piecewise linear and the truncation

error due to viscosity is reduced. The solution then propagates without exhibiting global

oscillations. Subsequent peaks in the errors (displayed in 5b) is due to the discrete search

of parameter space in the minimization of the r]onitor function (12). More sophisticated

minimization routines will be used in the future.

4 Conclusions

We have demonstrated that mapped polynomial approximation can provide significant

improvements in accuracy and efficiency for approximating functions with steep gradients.

Using analytic, dynamically varying, simple coordinate transformations we achieve im-

provements in convergence of several orders of magnitude for continuous functions with

steep gradients. These results are robust in the sense that even with crude minimization

procedures, that don't find the optimal coordbtate transformation, we achieve significant

improvements over the nonadapted case.

Discontinuous functions require smoothing in addition to coordinate transformations.

In this work we have used artificial viscosity to provide the smoothing. Although this

adds a finite order truncation error, the effect,_ are greatly reduced by computing in the

transformed coordinate system where less artificial viscosity is needed. Artificial viscosity

does have the drawback that it reduces the allowable time step for explicit methods from

O (N 2) to O (N 4) for Chebyshev based collocatic,n. We are currently working with alternate

smoothers based on filtering the expansion ccefficients in spectral space [10,23]. These

results will be reported elsewhere.

In this paper, we have restricted our attention to problems with only one high gra-

dient region. Problems with multiple steep gradient regions can be treated using more

complicated mapping functions. This will increase the dimensionality of parameter space

searched in the minimization of the monitor function. A better approach is to couple the

adaptive spectral method with a multidomain approach [19,24] so that the simple map-

pings described above can be used in each dc,main. We are currently investigating this

approach.
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Appendix A

We now derive a bound for the maximum norm of the interpolation error of a periodic func-

tion. Using the standard notation, we represent a periodic function u(x) as an expansion

of triginometric basis functions
oo

a e_k" (22)

where

1 _o2_a_ -- _ ,_(x)e-ik'dx, Ikl = 0,1,2,..

If we use the the galerkin approximation of u(x),

N

=

(23)

(24)

then the pointwise error is

luCx) - uN-,Cx)l := I _ a_,e'k=l" (25)

iki>_N

We can now bound the spectral interpolation error in the maximum norm by

max0_<=<2.lu(x) _ =,r_,Cx)I<_ _ la_l" (26)

{kl_N

Applying integrationby parts to (23) p times and noting the periodicityof the boundary

conditions,we have

1 (-1)'+' f[ (27)aN = 2"--_ (iN)" uCv_e-'Ntdx, p = 1,2,...

We can bound aN by applying the Cauchy-Schwartz inequality to (27)

1 {/m. (28)laN} < _ J0 }=('){2dz}_ v-- 1,2,...

It is therefore reasonable to use the functione,1

/02"I('_) = Aluo, I2 4_ S[uolm + Clu{2ds (29)

as the measure for the interpolation error in a coordinate system s.

Although this is the same functional used in [5,13] for Chebyshev polynomial approxi-

mation, the estimates leading to (29) in that case are not sharp. In fact, (29) was reported

in [4] to not be sufficiently sensitive to variations in the behavior of the solution. When

dealing with periodic functions, however, the same type of sharp estimates that lead to

the alternate functional used in [4], here lead to the H' norm functionals (eqs. (12) and

(13)), as used originally in [5,13].
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Figure Captions

Figure la. Log of pointwise error for fN(x) _ tanh(Mx) where = 1,2,3, 4.

Figure lb.

Figure 2a.

Figure 2b.

Figure 2c.

Figure 2d.

Figure 3a.

Figure 3b.

Figure 3c.

Figure 4a.

Figure 4b.

Figure 4c.

Figure 5a.

Figure 5b.

Log of maximum pointwise error for f32(x) _ tanh[M(x- x0)]. M =

8,32,128 and 0. _< x0 <_ 1.

Computed solution for the linear advection equation (15) with 32 collo-

cation points at time t = 0,15,30,45,60and 64 At, with At = 2_

Same as (2a) except solution adaptively computed based on H I norm.

Same as (2a) except solutio_ adaptively computed based on H 2 norm.

Same as (2a) except soluticn adaptively computed based on H 2 norm

and fourth order spatialdifferentiationisused.

Time history for viscous nonadapted Burger equation up to t--1.47.Vis-

cositycoefficientisu = .08.

Computed and exact solution at time t = 1.47.

Pointwise error history for solution displayed in 3a.

Time historyfor adaptively computed viscous Burger equation up to t =

1.47. Viscosity coefficientisu -- .02.

Computed and exact solution at time t -- 1.47.

Pointwise error history for solution displayed in 4a.

Sampling of time history for adaptively computed viscous Burger equa-

tion up to t -- 4.1. Viscosity coefficientis u -- .02. Initialfunction

Pointwise error history for :_olutiondisplayed in 5a.
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